Tools for Predicting Exposure Potential

Thomas E. McKone
Lawrence Berkeley National Laboratory
and
University of California, Berkeley

Overview

- □ Elements of Exposure
 Assessment
- □ Persistence, Proximity, and Mobility
- Chemical Properties and Exposure Potential
- □ Ranking Tools

Exposure Assessment

- Cumulative Exposures
 - Multiple sources
 - Multiple pathways
 - Multiple routes (inhalation ingestion, dermal)
- Dimensions and metrics
- Biomonitoring
- Models needed to fill information gaps

Chemical intake depends on release location, transport and fate, and human intake through competing exposure pathways

Measures of Exposure

- Population/pollutant classification
- Time-weighted average concentration
- Peak exposure
- Cumulative intake or dose
 - Hour
 - Day
 - Year
- Intake/source ratios (Intake fraction)

Biomarkers/Biomonitoring

Biomarkers

- Susceptibility
- Exposure
- *** Effect**
- Biological media
 - Breath
 - * Saliva
 - Urine
 - Blood
 - Other--lipid samples, biopsies

Models Fill Information Gaps

- Multimedia Mass-Balance Models
- Multi-pathway exposure models
- Example showing the integration of models and biomarkers

Multimedia Mass Balance Models

Chlorinated Benzene Series

Environmental Media/Exposure Media

Organophosphate Pesticide Use

1,000 to 5,000 5,000 to 10,000 Source: Department of Pesticide Regulation

Pesticide Use Report

Map by: Department of Health Services

Environmental Health Investigations Branch Bob McLaughlin, Martha Harnly

Confronting Exposure Potential

- Persistence
- Proximity
- Mobility

Overall Persistence

Inventory (mol) = Gains – Losses (mol/d)

Pov (d) =
$$\frac{\text{Inventory (mol)}}{\text{Re action Losses(mol/d)}}$$

Long-Range Transport Potential and Mobility

Characteristic travel distance (CTD)

$$CTD = u/k_{effective}$$

u = long-term average wind speed

k_{effective} = effective chemical decay rate

Mobility = Effective Velocity

Depends on wind velocity & "stickiness

Linking Populations to the "Reach" and Proximity of Specific Pollutant Emissions

Chemical Properties and Exposure Potential

- What chemical properties impact fate and exposure
- The OECD model comparison project
- Intake fraction
- How is exposure linked to POV and LRT?

Chemical Properties

Provide insight on:

- Fate and transport
- Persistence
- Bioaccumulation potential
- Exposure potential

Important properties

- Air-water partition coefficient
- Octanol-water partition factor
- Transformation rates (air, water, soil)

Example References

Chemical Properties and Partitioning

OECD Model Comparison

Response surface applied to 9 Models

Here is an example of one outcome mapped against four input parameters over their full range of variation

The Intake Fraction (iF)

$$\int_{T_1}^{\infty} \left(\sum_{i=1}^{P} \left(C_i(t) \cdot ln_i(t) \right) \right) dt$$

 C_i = Concentration (g/m³)

In_i = Intake rate (m³/person-day), for example breathing rate

P = Population (persons)

E = Emission rate (g/day)

$$\int_{T_1}^{T_2} E(t) dt$$

Intake Fraction Example

Rate of Intake:

 $IR = Ca \times B$

Steady State Concentration in Air:

$$Ca = E/V$$

Intake Fraction

iF = Intake / Emission

 $iF = (Ca \times B) / E$

iF = B/V

Loss Rate (Ventilation):

 $Loss = Ca \times V$

Benzene in the California South Coast Air Basin

CalTOX

Regional exchange of pollutants among air, soil, water, vegetation etc.

Intake Fraction

(Pathway dependence)

Intake Fraction 308 Chemicals

Inhalation Dominant
 Multipathway
 ■ Ingestion Dominant
 ↓ Meat and Milk

Ranking Tools

- □ Exposure depends strongly on:
 - Persistence

The longer it lasts the more likely is human intake CTD is dependent on persistence

- Proximity (chemical dependent)
 CTD defines proximity
- Mobility

Mobility of the pollutant Mobility of the population

□ To explore this we use models (CalTOX)

Characteristic Time of Intake (CTI)

Steady State Concentration in Air:

$$Ca = E/V$$

Rate of Intake:

$$IR = Ca \times B$$

Ventilation Rate Loss:

$$VR = Ca \times V$$

iF = (Ca x B) / (Ca x V) = B / V Intake fraction can be viewed as a competition between the rate of chemical uptake by the population (B) and the rate of clearance from the environment (V)

The relationship between iF and Pov:

$$iF = \frac{PoV}{CTI}$$

Where, at steady state,

M = Inventory of chemical in the environmental system

Pov = M / emission rate

CTI = M / population intake rate

CTI for Regional Multimedia Multipathway Exposures (CalTOX)

CTI for 315 Chemicals Using CalTOX Applied to North American Region with iF versus Tov (Persistence)

Emissions to Air

Emissions to Water

iF Based on Canadian Emissions Inventories, Environmental Concentrations and Food Basket Surveys [CEPA PSL1 reports (20010]

Pov (=Tov)
estimated from
chemical-specific
degradation rates
in a generic
environment

Concluding Points

- Chemical properties tell us much about Pov, mobility, and CTD
- Intake fraction is an effective measure of exposure potential
- Combined modeling/monitoring evaluations indicate that Pov and mobility relate strongly to intake fraction
- For many persistent pollutants, ingestion exposures are dominant and weakly dependent on population proximity